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Isothermal stress and elasticity tensors for ions and point dipoles using Ewald summations
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The isothermal stress tensor and isothermal elasticity tensor for systems of point charges and of nonpolar-
izable point dipoles are derived from the strain derivatives of the free energy. For the case of point dipoles, it
is shown that the angular dependence of the interaction potential gives rise to additional contributions to the
stress and elasticity tensors not recognized previously.
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I. INTRODUCTION defined in terms of the size and shape of the simulation cell

lonic and dipolar interactions play a key role in many PY Mij:hi_khkjl whereh; refers toh; in the reference state.
biological materialge.g., tublin, and collagerand processes | N€ matrixhy is composed of the vectors that represent the
(e.g., protein foldiny The self-organization of polar mol- length and orientation of the th[ee primary edges of the
ecules into the functional structures of living organisms issimulation cell, i.e., in 3Dh;={a,b,c}. Consequently, the
often guided by these strong, anisotropic interactidhg].  volume of the system can be written &s=deth. At the

Increasingly, knowledge of the mechanical properties of sucheference statey; =h; and the metric tensor is equal to the
biological systems is of prime interest. identity tensor,M;;=3;. Using these definitions the strain

In molecular simulations, large polar molecules are nortensor can be expressed in terms of the metric tensor as
mally modeled using a coarse-grained united-atom approach

in which groups of atoms are represented by interaction sites € = }(M_T My = 5:) ()
that can carry a net Coulombic charge, dipole moment and/or U kA
higher order multipoles. Because of the long-range nature of
these polar interactions, the Ewald summation technique i
commonly used to evaluate the Coulombic and dipolar ener-
gies. Given the importance of the elastic constants and th
common use of molecular simulations, it is striking that the
full expression for the elasticity tensor for multipolar sys- - .
tems using the Ewald formulation does not, to the best of ouf"gy: or stress tens)o.a.re not explicit functllons O%ii.’ —
nstead depend explicitly oM;;. We thus first require ex-

knowledge, appear in the literature. This paper helps to ad’ . ) L i i
dress this gap by providing a derivation of the fluctuationPr€sstons relating the derivatives with respedi;tto deriva-

formula for the isothermal elasticity tensor for systems oftlves with respect td4;;. To this end we follow the procedure

ions and non-polarizable dipoles. As a matter of consistenc?sXrl:tl;rr]g.?r;‘:ry Iziq;figi]t:al change ol can be expressed
and completeness, the isothermal stress tensor is also de- trary di : 9 1) xp

rived. A comparison between the derived expressions an terms of a differential straide; and a differential rotation
reIatéd expressions in the literature is also made wj; of the simulation cell. Rotations occur because there is

In the theory of elasticity, one is interested in studying thent0 r_eq_uwe_mentbthalMij rema|tn_s3{mmetr|c. The differential
deformation of a material under an applied load. The ternp o AN 1S given Dy the Symmetric tensor

hereMi’g refers to the transpose M;;.

We next proceed to derive expressions for the first and
econd derivatives with respectp of any general thermo-
ynamic quantity. However, in typical computer simulations
basic thermodynamic variablés.g., the volume, internal en-

strain is used to describe the deformation of a body from 1 t T
some reference state. The Lagrangian strain tensor is defined dei = 5 (dMMy + M M), )
as
1 and the differential rotation is given by the antisymmetric
Uy du;  Jduy du
& :_<_'+_1+_k_k), (1) tensor
2\ I I O

T
whereu;=r;=T;, is the displacement of a point, within the doyj = 2(dM”<Mle MicdMy). ()

body from its reference stat€é, We see from its definition ) i _

that the strain tensor is symmetric, i.e;=¢;. Throughout 0" any general thermodynamic variabf, that is an ex-
this paper, subscripts represent the Cartesian coordinates aRifit function of Mj; we have

the standard Einstein summation notation is used. In com- IA
puter simulations, the linear transformatigs M;;T; relates dA= M
the position of a particle within the body after a homoge- mn
neous deformation is applied to its original position in theThe differentialdA may also be expressed in terms a;
reference state of the body. The metric tenbfyy can be anddw; as

dA
T
M i

dm! = dMm. (5
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A A
dA= a—de§m+ o do!

€mn mn
Combining Egs(3)—6) and solving fordA/ de; and A/ dwy;
yields

(6)

dA 1) oA _ . 0A
_:_(_’r M Lemit ) )
o€ 2\ M ™My,
and
ﬂ:1<_&A t=1_pp-1 oA ) (8)
darj 2\ oMy ™ My
Applying Eq.(7) twice gives for the second strain derivative
(92A _E[D +D +D +D ]A (9)
de€ij dey T4 ijkl jikl jilk ijlk 42
where
A A
DijA= Mlm—MT_ Mi, lMT Mjnl (10)
aMmJaM M

Equations(7) and (9) relate the first and second deriva-
tives with respect ta; of any general thermodynamic vari-

able to the first and second derivatives with respedt{oin

terms of which the thermodynamics variables of interest ar
explicitly expressed. We note that Eqg) and(9) have the

expected symmetry properties,

i.ed/&ﬂj:a/aéji and
(92/076ij&6k|:(92/(9€k|(96ij.

Next, we turn to the derivations of the general expression
for the stress and elasticity tensors. At constant temperatu
T the stress tensow;;, is given in terms of the free energy by

(9F

Vo = P
ij

(12)
The Helmholtz free energy is given =-kgT In Q and the
canonical ensemble partition functioQ, is given by

Q:f exd - H/kgT]dI, (12
whereH=U+K, andU is the total potential energy is the
total kinetic energykg is Boltzmann’s constant, and rep-
resents phase space.

Using Eqgs.(7) and(11), the stress tensor is

aij = (o7;) = pks TMinM 1, (13)
where
190U
B (14
VO"EiJ'

the density is given by=N/V and the brackets denote an

ensemble average.

The isothermal elasticity tens@;, is given in terms of

the free energy by
i

15
196” a6k| ( )

VG =

Differentiating the free energy using E@®) gives

%
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Cijklzci?m ke T[<0' Uk|> <0' ><O'k|>]+C”k|, (16)
where
1/ U
Cha= v< > (17
(?eijﬁem
and
Clia = Pk TMiaMTIMEIM T+ MM T MM T
(18)

The first term in Eq(16) is the so-called Born term and is

' related to the zero temperature elastic constants. The second

term is the stress fluctuation term and accounts for the finite
temperature effects. The last term in E46) is the ideal gas
contribution and is related to the derivatives of the volume
with respect to the strain tensor.
From Egs.(13) and(16), we can compute the stress and

elasticity tensor for any given potential energy functiah,

In Sec. Il we derive the desired expressions for a system of
pairwise interacting point charges and in Sec. Il for nonpo-
larizable point dipoles. The contribution to the stress and
elasticity tensor arising from charge-dipole interactions are

glso given in Sec. lll for completeness.

II. POINT CHARGES

We first summarize the results for the stress and elasticity
nsors for systems of point charges. The potential energy of
a system of point charges using Ewald summations is given

by [4]

U=U"+UK+UsS+U". (19
The real space contribution to the energy is
N-1 N
U= > ooBy, (20)
a=1 b=a+1

whereq? is the charge on particke The scalar coefficierB,
is given by

1
By = . erfc(ar), (21)
wherea is the Ewald convergence paramet@t,v’ﬁ is the
distance between particles and b, and r,=r’-r? is their
separation vector. The reciprocal space contribution to the
energy is given by

kmax
uk= > AK)SS, (22)
k#0
where
_2mexd- K?/(402)]
Ak) = vk (23
and
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N

S= 2 o exp(= iknf )

a=1

(24)

The reC|procaI space wave vector has the fdm:\M’r k

and k 27th n; is the wave vector in the reference state
while § denotes the complex conjugate $and the vector

n, is a set of three integers. The self-interaction energy i

given by
N
o
Us=-2 —(@? (25)
a=1 N
and the energy due to the boundary condition is
2w M?
==, (26)
2np+1V

where 7 is the dielectric constant of the reaction field avid
is the total dipole moment of the system.

Differentiating Eq.(19) with respect tog;;, gives the con-
figurational part of the stress tensor,

kmax
?: - _E E a°q Blrlr] 2 A(k)SS®IJ
a—l b=a+1
2 1
+ =T [2MM; - M2§], (27)
2n+1V
where
kik;
0 =3 - 2*—21 (28)
and
1 1 1
—=—+ . 29
N 4d? kP (29
It is noted here that the recursion formula
1B,
1= " F&_I’n (30)

describes the higher order derivatives of the scBRarDif-
ferentiating Eq.(19) twice with respect to the strain tensor
gives for the Born term

N-1 N

v\ 2 2 ddBarinn

a=1 b=a+1

|]k|

kmax
> AKSSQ ) +
k%0

+ 86 + 81 ) — 2( S MM + (MEM;) i) ],

1
m@[@wz)(ﬁ.j &
(31)

where
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kik: ki k;
Qjjig = 9,0 + (69 +5||51k)+4—]k4L
_ Zkiéjkkl + K gk + K; 9Ky + ki 9y Kie (32)

)\2

'The last terms in Eq927) and (31) arise fromU" because

he total dipole moment, depends org;. Similar but not
equivalent expressions f@,,; and sz are given in Ref.

(5].

IIl. POINT DIPOLES

We now extend the results of Sec. Il to the case of point
dipole particles. The total potential energy for a system of
dipoles is given by6]

U=U"+Uk+Us+U" (33
The real space term has the form
N-1 N
=2 2 (B (i) (upfmBz,  (39)
a=1 b=a+1
while the reciprocal space term is
kmax
Uk=> AK)SS", (35)
k#0
where
N
== 2 i(ppkmexd - ikro]. (36)
a=1
The self-interaction term is
2a°
us=- E —=(uawn) (37)
a=1 3
and the boundary term again has the form
2w M?
== — (39)
2np+1V

Upon application of a finite strain, the position and orien-
tation of a point dipole change, i.e., they are functions of the
strain tensor. Because the potential energy depends explicitly
on the orientations of the dipoles, which are considered in-
dependent of their positions, the stress and elasticity tensors
will therefore contain terms which involve strain derivatives
of the dipoles. However, because we are restricting ourselves
to the case of nonpolarizable dipoles, the magnitude of the
dipole moment must remain constant. Under this constraint,
the dipole moment can be expressed in terms of the dipole
moment in the reference stajg, and the metric tensol;;,
according to

7‘4 'I'a 1/2
M= (~—C'T—q—~) Mi - (39
HmMmn an:up
The fact that the dipole depends on the metric tensor, and
hence the strain tensor, was not included in previous deriva-

061102-3



VAN WORKUM et al. PHYSICAL REVIEW E 71, 061102(2005

[(c) in Figs. 1 and 2 Finally a shear strain is applied in the
direction orthogonal to the first shear deformation such that
? the system is brought back to its original shape and orienta-
tion [(d) in Figs. 1 and 2 Clearly, the point dipoles must

rotate when the system rotates during the second step in this
pathway. If one assumes that a point dipole does not rotate
during the two shear strain steps, the net result of this defor-
mation pathway is that the dipoles have rotatedlfig. 1),
which is inconsistent because the net strain and rotation of
the overall system is zero. However, if the dipoles rotate
according to Eq(39) when the system is strained, the orien-
\ tations of the point dipoles will return to their original state
after the final stegFig. 2. The conclusion here is the same
for point dipoles as well as physical dipoles which occupy an
extended region of space.

In our discussion below, a normalized dipole dyadic prod-
uct is defined as

(d)

A A Mol
frofig= ==L (40)
MmMm

FIG. 1. Deformation sequence assuming point dipoles do not
rotate when the system is strainéa) reference statéb) after shear  For terms that involve the product of two dipoles we have
strain by angled, (c) after counter-clockwise rotation by ange

, ; b
and (d) after final shear strain by angke 3(Maﬂm) — -1 b b byran

e Ml + e~ () (B
. . . ij
tions for the stress tensor, i.e., the assumption ghaji; was + 0oy M 41
incorrectly made. For this reason, terms in the strain deriva- Fattp)] Bi (41)
tive of the potential energy that involve the dipole are givengqr terms that involve the product of a dipole and a separa-
below. tion vector, the first strain derivative is given by

Figures 1 and 2 illustrate the key point that a point dipole
may rotate upon elastic deformation. Consider a deformation  a(ury) 5 A agtel
pathway whereby the system is elastically deformed by first — "~ = Miglital g+ Vaptp = (el m) altg]M g, (42)
shear straining it clockwise through an anglgb) in Figs. 1 U
and 2. Next, the system is rotated counter-clockwise by and for terms that involve the product of a dipole and the
reciprocal space vector, we have

I pkKim) -
/ &Eij

Then using Egs(41)—(43) evaluated at zero strain, the
configurational part of the stress tensor is given by

= (k) M ikt gM T (43)

N-1 N
1
o-ﬁ.’ =- —E 2 {(M;Mﬁ)Bzrirj - (M%rm)(ﬂgrn)BiirirJ
Vazl b=at+1

Kk,
1 max
+ (1 m)BoZp + (i m)BoZe = BIWE®} = v > Ak)

? k#0
X[55"@;; - 8"y — 5% ]
* 1 - N-1 N
+ = WEP — MI2s: ¢, 44
VZ 27]+ 1 aE::]_ b:%}-l ij 1] ( )

* where

b_ b, b by rara, ~b~b
W= e + i = (pegnpeer) (575 + ) (45)
FIG. 2. Deformation sequence assuming point dipoles rotate ac-
cording to Eqg.(39): (a) referencg state(,b)‘ after shear strain by zﬁ :’uiarj + ri,uja— (Mﬁ]rm)la‘lal&‘? (46)
angle 6, (c) after counter-clockwise rotation by angte and (d)
after final shear strain by angle and
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P i)

Wy =i (k) 2 de K m, (47) I = (i) M (A T Mg i
) =1 I (9€|](9€k|
- - - + RoppMTEM A M
Note that Eq.(44) is different from previously derived Haltp kp'“pr“
expression$7-9|. Heyes and Aguadst al. assumed that + (MmMnJM M/;'V'T Mkpﬁﬁil«é’.
A pmptn) _ (48) + fogM T MipiM gl = Mg (G
deij ’ +ﬁ2/lﬁ)|\/| 'Mk;(ﬂpﬂq-'-/-l’p/*a)MT
+ MM 2
Implylng that i)lu‘a/"L,B /"La/“l’ﬁ) Bi kp(/“(’plu‘q
+ ML, (52)
I gy m)
(49) P
IM;; (Mmrm)
] é’euafkl (Mmrm)Mla:“aMﬁM ﬂJMkpMquM
However, the following argument demonstrates that this as- 1~ ~
sumption is not in general justified. LetdU = MigtafigM 5 Mgl * Tpiq)M gl
:_(QU/r?wm.n)dwEm be the cha}nge in energy due to a small - Mm(Marﬁ“aMﬁ)M Bijp,up,qu q
rigid rotation dw;; of the entire system. It is clear that) (53)

=0 for any isolated systefii0]. Let us consider a system of

point dipoles in whicha=0 and »=0. For this choice of and

parametersUk=0, Us=0, and U'=0 so thatU=U". This 5

choice is only made for reasons of simplicity and clarity in ko) _ = 3k )M 2 M T 2 M (54)

this illustration; the following discussion applies regardless  Je€j;deq e RalET A ke

of the choice ofx and #. This choice also servers to illustrate : o

that Eq.(39) is appropriate even when the Ewald summannBOtJnSItg?mE?ns't(ﬁs)gl(ggicei;/aluated ak; =0, we have for the

y tensor

method is not used. Now if we evaluaﬂ%{la)/aw,J for this

system, assuming that dipole orientation does not depend on /NN

Mj, we get forw; =0 Cila =y El bEl{BMﬁE. +[(uiumBs = (1ar )
a=1 b=at

N

b a b b a
—E > Bz(r)[(M.J ) () + (ufrj = ried) X(M”r”)B“]ri”rkr'+[(Mmrm)Bsz”+(M”rn)Bsz”

‘?w'l a=1 bea+1 2 - "b]rkrl + r-r-[(,uf‘nrm)B;;Zb + (Mbm rmBsZi
X (par)]. (50) - BZVVab] Bz[(Mmrm)Yum ,U«m"m)Yum +Zj Zkl
km
This expression is not equal to 0 unlegs;=r;x’. If instead, +7b7an ) 4 = S Do+ 5P 4SSO
we let »; depend onM;; according to Eq.39), it can be ZjZuli v gOA(k)[‘ Pija +5ijq +55 i
shown that
+\If,J\Ifk|+‘I' Wy - ®||(‘I’k|5 +\Ifk|5) (s Wi;
oU
— =0, 51 —_ 1 2w
Joj (5) +5W¥;;) Oy +V22 (M2>( 8O + S + 61 Ojk)
which is the required relation. In other words the energy is 1 4m

constant with respect to rigid rotations of the system when + Vo1 E E [X,Jk| b5k| - 5.,-\/\/§|b]
the orientation of the dipoles depend by according to Eq. K a=1 b=a+1
(39). Therefore, they also depend e and this must be (55)
taken into account when evaluating the stress and elast|C|ty
tensors. Although in some cases the contribution of the ad¥here
ditional terms in the expression for the stress tensor may be Xab = ( m>[3( + by 4 (BPRRE07
negligible when ensemble averages are considered, it is not XGia = (uiopam) (SRS AGET + B i) + (f gl
clear that this is generally the case. The difference may also + Mi i ,uk,&, )= (i i ,uj + [ ,u]b)(,ukm + ,uk,u|)
be important when evaluating the elasticity tensor because of
contributions from the fluctuations of the stress tensor.

We next move to the more complex problem of calculat-
ing second derivative quantities and the elasticity tensor. Vil = 3l m) A7 ikl = 5 (g + Tigs)
Only the results for the derivatives of terms which involve (A o
wi, Which were neglected in early work, are summarized (g + Tipt) i’ 7
here. The second derivatives of the products involyingre  and

— (Pl + ) (BERE + BRRD), (56)
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N-1 N
Ijk| 3'2 (Mmkm)[‘*?ﬂ‘]aﬂﬁﬂae Wafn, (58) Cﬁm E:L bE].{Bl(anljkl Ijkl) Ba(0® Z
a= at
In systems which contain point charges and point dipoles, -q Zﬁ-‘)rkrl - Bzrirj(qaZE| - qPZ8) + By(0Pulrm
cross interaction terms must also be included. The real-space Kmax
energy due to ion-dipole interactions is given by — QPR T} + S AKI[S Dy + Sq)”kl
k#0
N1ON +(5'S+ S8) Yy — 0;(SDy + S Dy)
U'=2 2 Bile(unrm) ~d(uird]. (59
=1 b=a+1 * *
. = (SD; +SDy)Oy] /). (62)

The re(_:iprocall—spac.:e cpntribution to the energy from the ion- Therefore the full stress tensor is given by Etp) where
dipole interactions is given by o}, is given by the sum of Eq$27), (44), and(61) The full
elast|C|ty tensor is given by E¢16) WhereCI W IS given by
the sum of Egs(31), (55), and (62). Note that the expres-

km X
uk= i AK[S'S+SS] (60) sions derived here are valid when no other internal or exter-
ko ' nal constraints exist.

IV. CONCLUSION

Consequently the ion-dipole interaction also contributes to Many synthetic and biological materials are composed of
the stress and elasticity tensors. These additional terms ajénic and dipolar particles. A computational understanding of
given by the elastic properties of these materials requires a sound the-
oretical description of the stress and elasticity tensors for
ionic and dipolar systems. Previous theoretical descriptions

N 1
of these tensors in ionic and dipolar systems assumed that
‘TIJ =T _E E {Bl(qbzﬁ azb) +[qa(f“m m) the orientation of the dipoles arg indegendent of the strain
Vart bman tensor, thereby neglecting contributions to the stress and
Kmax elasticity tensors that could be important. Our new expres-
- qb(,uﬁrn)]Bzrirj} E AK)[(S"S+SS) 0j; sions for the elasticity and stress tensors of ionic and dipolar
systems should provide a sound foundation for computa-
- S*‘I’ij - S\Iffl] (61) tipnal _studies aimed at understanding _the elastic propertie_s pf
biological structures where the constituent elements exhibit
very large monopole and/or dipole moments that may domi-
and nate their mechanical properties.
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