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I. INTRODUCTION

Ionic and dipolar interactions play a key role in many
biological materialsse.g., tublin, and collagend and processes
se.g., protein foldingd. The self-organization of polar mol-
ecules into the functional structures of living organisms is
often guided by these strong, anisotropic interactionsf1,2g.
Increasingly, knowledge of the mechanical properties of such
biological systems is of prime interest.

In molecular simulations, large polar molecules are nor-
mally modeled using a coarse-grained united-atom approach
in which groups of atoms are represented by interaction sites
that can carry a net Coulombic charge, dipole moment and/or
higher order multipoles. Because of the long-range nature of
these polar interactions, the Ewald summation technique is
commonly used to evaluate the Coulombic and dipolar ener-
gies. Given the importance of the elastic constants and the
common use of molecular simulations, it is striking that the
full expression for the elasticity tensor for multipolar sys-
tems using the Ewald formulation does not, to the best of our
knowledge, appear in the literature. This paper helps to ad-
dress this gap by providing a derivation of the fluctuation
formula for the isothermal elasticity tensor for systems of
ions and non-polarizable dipoles. As a matter of consistency
and completeness, the isothermal stress tensor is also de-
rived. A comparison between the derived expressions and
related expressions in the literature is also made.

In the theory of elasticity, one is interested in studying the
deformation of a material under an applied load. The term
strain is used to describe the deformation of a body from
some reference state. The Lagrangian strain tensor is defined
as

ei j =
1

2
S ]ui

]r̃ j

+
]uj

]r̃ i

+
]uk

]r̃ i

]uk

]r̃ j
D , s1d

whereui =r i − r̃ i, is the displacement of a point,r i, within the
body from its reference state,r̃ i. We see from its definition
that the strain tensor is symmetric, i.e.,ei j =e ji . Throughout
this paper, subscripts represent the Cartesian coordinates and
the standard Einstein summation notation is used. In com-
puter simulations, the linear transformationr i =Mij r̃ j relates
the position of a particle within the body after a homoge-
neous deformation is applied to its original position in the
reference state of the body. The metric tensorMij can be

defined in terms of the size and shape of the simulation cell

by Mij =hikh̃kj
−1 where h̃ij refers tohij in the reference state.

The matrixhij is composed of the vectors that represent the
length and orientation of the three primary edges of the

simulation cell, i.e., in 3Dhij =haW ,bW ,cWj. Consequently, the
volume of the system can be written asV=deth. At the

reference state,hij = h̃ij and the metric tensor is equal to the
identity tensor,Mij =di j . Using these definitions the strain
tensor can be expressed in terms of the metric tensor as

ei j =
1

2
sMik

† Mkj − di jd, s2d

whereMij
† refers to the transpose ofMij .

We next proceed to derive expressions for the first and
second derivatives with respect toei j of any general thermo-
dynamic quantity. However, in typical computer simulations
basic thermodynamic variablesse.g., the volume, internal en-
ergy, or stress tensord are not explicit functions ofei j , but
instead depend explicitly onMij . We thus first require ex-
pressions relating the derivatives with respect toei j to deriva-
tives with respect toMij . To this end we follow the procedure
as outlined by Lutskof3g.

An arbitrary differential change ofMij can be expressed
in terms of a differential straindei j and a differential rotation
dvi j of the simulation cell. Rotations occur because there is
no requirement thatdMij remain symmetric. The differential
strain is given by the symmetric tensor

dei j =
1

2
sdMik

† Mkj + Mik
† dMkjd, s3d

and the differential rotation is given by the antisymmetric
tensor

dvi j =
1

2
sdMik

† Mkj − Mik
† dMkjd. s4d

For any general thermodynamic variable,A, that is an ex-
plicit function of Mij we have

dA=
]A

]Mmn
dMnm

† =
]A

]Mmn
† dMnm. s5d

The differentialdA may also be expressed in terms ofdei j
anddvi j as
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dA=
]A

]emn
denm

† +
]A

]vmn
dvnm

† . s6d

Combining Eqs.s3d–s6d and solving for]A/]ei j and]A/]vi j
yields

]A

]ei j
=

1

2
S ]A

]Mim
† M†

mj
−1 + Mim

−1 ]A

]Mmj
D s7d

and

]A

]vi j
=

1

2
S ]A

]Mim
† M†

mj
−1 − Mim

−1 ]A

]Mmj
D . s8d

Applying Eq.s7d twice gives for the second strain derivative,

]2A

]ei j]ekl
=

1

4
fDijkl + Djikl + Djilk + DijlkgA, s9d

where

DijklA = Mim
−1 ]2A

]Mmj]Mkn
† M†

nl
−1 − Mim

−1M†
ml
−1Mjn

−1 ]A

]Mnk
. s10d

Equationss7d and s9d relate the first and second deriva-
tives with respect toei j of any general thermodynamic vari-
able to the first and second derivatives with respect toMij , in
terms of which the thermodynamics variables of interest are
explicitly expressed. We note that Eqs.s7d and s9d have the
expected symmetry properties, i.e.,] /]ei j =] /]e ji and
]2/]ei j]ekl=]2/]ekl]ei j .

Next, we turn to the derivations of the general expressions
for the stress and elasticity tensors. At constant temperature
T the stress tensor,si j , is given in terms of the free energy by

Vsi j =
]F

]ei j
. s11d

The Helmholtz free energy is given byF=−kBT ln Q and the
canonical ensemble partition function,Q, is given by

Q =E expf− H/kBTgdG, s12d

whereH=U+K, andU is the total potential energy,K is the
total kinetic energy,kB is Boltzmann’s constant, andG rep-
resents phase space.

Using Eqs.s7d and s11d, the stress tensor is

si j = ksi j
Bl − rkBTMim

−1M†
mj
−1, s13d

where

si j
B =

1

V

]U

]ei j
, s14d

the density is given byr=N/V and the brackets denote an
ensemble average.

The isothermal elasticity tensorCijkl is given in terms of
the free energy by

VCijkl =
]2F

]ei j]ekl
. s15d

Differentiating the free energy using Eq.s9d gives

Cijkl = Cijkl
B −

V

kBT
fksi j

Bskl
Bl − ksi j

Blkskl
Blg + Cijkl

K , s16d

where

Cijkl
B =

1

V
K ]2U

]ei j]ekl
L s17d

and

Cijkl
K = rkBTsMim

−1M†
mk
−1Mjn

−1M†
nl
−1 + Mim

−1M†
ml
−1Mjn

−1M†
nk
−1d.

s18d

The first term in Eq.s16d is the so-called Born term and is
related to the zero temperature elastic constants. The second
term is the stress fluctuation term and accounts for the finite
temperature effects. The last term in Eq.s16d is the ideal gas
contribution and is related to the derivatives of the volume
with respect to the strain tensor.

From Eqs.s13d and s16d, we can compute the stress and
elasticity tensor for any given potential energy function,U.
In Sec. II we derive the desired expressions for a system of
pairwise interacting point charges and in Sec. III for nonpo-
larizable point dipoles. The contribution to the stress and
elasticity tensor arising from charge-dipole interactions are
also given in Sec. III for completeness.

II. POINT CHARGES

We first summarize the results for the stress and elasticity
tensors for systems of point charges. The potential energy of
a system of point charges using Ewald summations is given
by f4g

U = Ur + Uk + Us + Uf . s19d

The real space contribution to the energy is

Ur = o
a=1

N−1

o
b=a+1

N

qaqbB0, s20d

whereqa is the charge on particlea. The scalar coefficientB0
is given by

B0 =
1

r
erfcsard, s21d

wherea is the Ewald convergence parameter,r =Îr ir i is the
distance between particlesa and b, and r i =r i

b−r i
a is their

separation vector. The reciprocal space contribution to the
energy is given by

Uk = o
kWÞ0

kWmax

AskdSS* , s22d

where

Askd =
2p

V

expf− k2/s4a2dg
k2 , s23d

and
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S= o
a=1

N

qa exps− ikmrmd. s24d

The reciprocal space wave vector has the formki =M†
i j
−1k̃j

and k̃i =2ph̃ij
−1nj is the wave vector in the reference state,

while S* denotes the complex conjugate ofS and the vector
ni is a set of three integers. The self-interaction energy is
given by

Us = − o
a=1

N
a

Îp
sqad2 s25d

and the energy due to the boundary condition is

Uf =
2p

2h + 1

M2

V
, s26d

whereh is the dielectric constant of the reaction field andMi
is the total dipole moment of the system.

Differentiating Eq.s19d with respect toei j , gives the con-
figurational part of the stress tensor,

si j
B = −

1

V
o
a=1

N−1

o
b=a+1

N

qaqbB1r ir j −
1

V
o
kÞ0

kmax

AskdSS*Qi j

+
2p

2h + 1

1

V2f2MiM j − M2di jg, s27d

where

Qi j = di j − 2
kikj

l2 s28d

and

1

l2 =
1

4a2 +
1

k2 . s29d

It is noted here that the recursion formula

Bn+1 = −
1

r

]Bn

]r
s30d

describes the higher order derivatives of the scalarB0. Dif-
ferentiating Eq.s19d twice with respect to the strain tensor
gives for the Born term

Cijkl
B =

1

VKo
a=1

N−1

o
b=a+1

N

qaqbB2r ir jrkr lL
+

1

VKo
kÞ0

kmax

AskdSS*Vi jklL +
2p

2h + 1

1

V2fkM2lsdi jdkl

+ dikd jl + dild jkd − 2sdi jkMkMll + kMiM jldkldg, s31d

where

Vi jkl = Qi jQkl + sdikd jl + dild jkd + 4
kikjkkkl

k4

− 2
kid jkkl + kjdikkl + kjdilkk + kid jlkk

l2 . s32d

The last terms in Eqs.s27d and s31d arise fromUf because
the total dipole momentMi depends onei j . Similar but not
equivalent expressions forC1111

B andC1122
B are given in Ref.

f5g.

III. POINT DIPOLES

We now extend the results of Sec. II to the case of point
dipole particles. The total potential energy for a system of
dipoles is given byf6g

U = Ur + Uk + Us + Uf . s33d

The real space term has the form

Ur = o
a=1

N−1

o
b=a+1

N

smn
amn

bdB1 − smn
arndsmm

b rmdB2, s34d

while the reciprocal space term is

Uk = o
kÞ0

kmax

AskdSS* , s35d

where

S = − o
a=1

N

ismm
a kmdexpf− iknrng. s36d

The self-interaction term is

Us = − o
a=1

N
2a3

3Îp
smm

a mm
a d s37d

and the boundary term again has the form

Uf =
2p

2h + 1

M2

V
. s38d

Upon application of a finite strain, the position and orien-
tation of a point dipole change, i.e., they are functions of the
strain tensor. Because the potential energy depends explicitly
on the orientations of the dipoles, which are considered in-
dependent of their positions, the stress and elasticity tensors
will therefore contain terms which involve strain derivatives
of the dipoles. However, because we are restricting ourselves
to the case of nonpolarizable dipoles, the magnitude of the
dipole moment must remain constant. Under this constraint,
the dipole moment can be expressed in terms of the dipole
moment in the reference state,m̃i, and the metric tensor,Mij ,
according to

mi = S m̃qm̃q

m̃mMmn
†Mnpm̃p

D1/2

Miam̃a. s39d

The fact that the dipole depends on the metric tensor, and
hence the strain tensor, was not included in previous deriva-
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tions for the stress tensor, i.e., the assumption thatmi =m̃i was
incorrectly made. For this reason, terms in the strain deriva-
tive of the potential energy that involve the dipole are given
below.

Figures 1 and 2 illustrate the key point that a point dipole
may rotate upon elastic deformation. Consider a deformation
pathway whereby the system is elastically deformed by first
shear straining it clockwise through an angleu fsbd in Figs. 1
and 2g. Next, the system is rotated counter-clockwise byu

fscd in Figs. 1 and 2g. Finally a shear strain is applied in the
direction orthogonal to the first shear deformation such that
the system is brought back to its original shape and orienta-
tion fsdd in Figs. 1 and 2g. Clearly, the point dipoles must
rotate when the system rotates during the second step in this
pathway. If one assumes that a point dipole does not rotate
during the two shear strain steps, the net result of this defor-
mation pathway is that the dipoles have rotated byu sFig. 1d,
which is inconsistent because the net strain and rotation of
the overall system is zero. However, if the dipoles rotate
according to Eq.s39d when the system is strained, the orien-
tations of the point dipoles will return to their original state
after the final stepsFig. 2d. The conclusion here is the same
for point dipoles as well as physical dipoles which occupy an
extended region of space.

In our discussion below, a normalized dipole dyadic prod-
uct is defined as

m̂am̂b =
mamb

mmmm
. s40d

For terms that involve the product of two dipoles we have

]smm
a mm

b d
]ei j

= Mia
−1fma

amb
b + ma

bmb
a − smm

a mm
b dsm̂a

am̂b
a

+ m̂a
bm̂b

bdgM†
b j
−1. s41d

For terms that involve the product of a dipole and a separa-
tion vector, the first strain derivative is given by

]smmrmd
]ei j

= Mia
−1fmarb + ramb − smmrmdm̂am̂bgM†

b j
−1, s42d

and for terms that involve the product of a dipole and the
reciprocal space vector, we have

]smmkmd
]ei j

= − smmkmdMia
−1m̂am̂bM†

b j
−1. s43d

Then using Eqs.s41d–s43d evaluated at zero strain, the
configurational part of the stress tensor is given by

si j
B = −

1

V
o
a=1

N−1

o
b=a+1

N

hsmm
a mm

b dB2r ir j − smm
a rmdsmn

brndB3r ir j

+ smm
a rmdB2Zij

b + smm
b rmdB2Zij

a − B1Wij
abj −

1

V
o
kÞ0

kmax

Askd

3fSS*Qi j − S*Ci j − SCi j
* g

+
1

V2

4p

2h + 1Ho
a=1

N−1

o
b=a+1

N

Wij
ab − M2di jJ , s44d

where

Wij
ab = mi

am j
b + mi

bm j
a − smm

a mm
b dsm̂i

am̂ j
a + m̂i

bm̂ j
bd, s45d

Zij
a = mi

ar j + r im j
a − smm

a rmdm̂i
am̂ j

a, s46d

and

FIG. 1. Deformation sequence assuming point dipoles do not
rotate when the system is strained:sad reference state,sbd after shear
strain by angleu, scd after counter-clockwise rotation by angleu,
and sdd after final shear strain by angleu.

FIG. 2. Deformation sequence assuming point dipoles rotate ac-
cording to Eq.s39d: sad reference state,sbd after shear strain by
angle u, scd after counter-clockwise rotation by angleu, and sdd
after final shear strain by angleu.
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Ci j = io
a=1

N

smn
akndm̂i

am̂ j
ae−ikmrm. s47d

Note that Eq.s44d is different from previously derived
expressionsf7–9g. Heyes and Aguadoet al. assumed that

]smm
a mm

b d
]ei j

= 0, s48d

implying that

]smm
a mm

b d
]Mij

= 0. s49d

However, the following argument demonstrates that this as-
sumption is not in general justified. Let dU
=s]U /]vmnddvnm

† be the change in energy due to a small
rigid rotation dvi j of the entire system. It is clear thatdU
=0 for any isolated systemf10g. Let us consider a system of
point dipoles in whicha=0 and h=0. For this choice of
parameters,Uk=0, Us=0, and Uf =0 so thatU=Ur. This
choice is only made for reasons of simplicity and clarity in
this illustration; the following discussion applies regardless
of the choice ofa andh. This choice also servers to illustrate
that Eq.s39d is appropriate even when the Ewald summation
method is not used. Now if we evaluate]U /]vi j for this
system, assuming that dipole orientation does not depend on
Mij , we get forvi j =0

]U

]vi j
= o

a=1

N−1

o
b=a+1

N
1

2
B2srdfsmi

ar j − r im j
adsmm

b rmd + smi
br j − r im j

bd

3smn
arndg. s50d

This expression is not equal to 0 unlessmi
ar j =r im j

a. If instead,
we let mi depend onMij according to Eq.s39d, it can be
shown that

]U

]vi j
= 0, s51d

which is the required relation. In other words the energy is
constant with respect to rigid rotations of the system when
the orientation of the dipoles depend onMij according to Eq.
s39d. Therefore, they also depend onei j and this must be
taken into account when evaluating the stress and elasticity
tensors. Although in some cases the contribution of the ad-
ditional terms in the expression for the stress tensor may be
negligible when ensemble averages are considered, it is not
clear that this is generally the case. The difference may also
be important when evaluating the elasticity tensor because of
contributions from the fluctuations of the stress tensor.

We next move to the more complex problem of calculat-
ing second derivative quantities and the elasticity tensor.
Only the results for the derivatives of terms which involve
mi, which were neglected in early work, are summarized
here. The second derivatives of the products involvingmi are

]2smm
a mm

b d
]ei j]ekl

= 3smm
a mm

b dMia
−1sm̂a

am̂b
aM†

b j
−1Mkp

−1m̂p
am̂q

a

+ m̂a
bm̂b

bM†
b j
−1Mkp

−1m̂p
bm̂q

bdM†
ql
−1

+ smm
a mm

b dMia
−1sm̂a

am̂b
aM†

b j
−1Mkp

−1m̂p
bm̂q

b

+ m̂a
bm̂b

bM†
b j
−1Mkp

−1m̂p
am̂q

adM†
ql
−1 − Mia

−1sm̂a
am̂b

a

+ m̂a
bm̂b

bdM†
b j
−1Mkp

−1smp
amq

b + mp
bmq

adM†
ql
−1

− Mia
−1sma

amb
b + ma

bmb
adM†

b j
−1Mkp

−1sm̂p
am̂q

a

+ m̂p
bm̂q

bdM†
ql
−1, s52d

]2smmrmd
]ei j]ekl

= 3smmrmdMia
−1m̂am̂bM†

b j
−1Mkp

−1m̂pm̂qM
†
ql
−1

− Mia
−1m̂am̂bM†

b j
−1Mkp

−1smprq + rpmqdM†
ql
−1

− Mia
−1smarb + rambdM†

b j
−1Mkp

−1m̂pm̂qM
†
ql
−1,

s53d

and

]2smmkmd
]ei j]ekl

= 3smmkmdMia
−1m̂am̂bM†

b j
−1Mkp

−1m̂pm̂qM
†
ql
−1. s54d

Using Eqs.s52d–s54d evaluated atei j =0, we have for the
Born term in the elasticity tensor

Cijkl
B =

1

VKo
a=1

N−1

o
b=a+1

N

hB1Xijkl
ab + fsmm

a mm
b dB3 − smm

a rmd

3smn
brndB4gr ir jrkr l + fsmm

a rmdB3Zij
b + smn

brndB3Zij
a

− B2Wij
abgrkr l + r ir jfsmm

a rmdB3Zkl
b + smm

b rmdB3Zkl
a

− B2Wkl
abg − B2fsmm

b rmdYijkl
a + smm

a rmdYijkl
b + Zij

aZkl
b

+ Zij
bZkl

a gjL +
1

VKo
kÞ0

kmax

AskdfS*Fi jkl + SFi jkl
* + SS*Vi jkl

+ Ci jCkl
* + Ci j

* Ckl − Qi jsCklS
* + Ckl

* Sd − sS*Ci j

+ SCi j
* dQklgL +

1

V2

2p

2h + 1
kM2lsdi jdkl + dikd jl + dild jkd

+
1

V2

4p

2h + 1Ko
a=1

N−1

o
b=a+1

N

fXijkl
ab − Wij

abdkl − di jWkl
abgL ,

s55d

where

Xijkl
ab = smm

a mm
b df3sm̂i

am̂ j
am̂k

am̂l
a + m̂i

bm̂ j
bm̂k

bm̂l
bd + sm̂i

am̂ j
am̂k

bm̂l
b

+ m̂i
bm̂ j

bm̂k
am̂l

adg − sm̂i
am̂ j

a + m̂i
bm̂ j

bdsmk
aml

b + mk
bml

ad

− smi
am j

b + mi
bm j

adsm̂k
am̂l

a + m̂k
bm̂l

bd, s56d

Yijkl
a = 3smm

a rmdm̂i
am̂ j

am̂k
am̂l

a − m̂i
am̂ j

asmk
arl + rkml

ad

− smi
ar j + r im j

adm̂k
am̂l

a, s57d

and
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Fi jkl = − 3io
a=1

N

smm
a kmdm̂i

am̂ j
am̂k

am̂l
ae−iknrn. s58d

In systems which contain point charges and point dipoles,
cross interaction terms must also be included. The real-space
energy due to ion-dipole interactions is given by

Ur = o
a=1

N−1

o
b=a+1

N

B1fqasmm
b rmd − qbsmn

arndg. s59d

The reciprocal-space contribution to the energy from the ion-
dipole interactions is given by

Uk = o
k=0

kmax

AskdfS*S+ S*Sg. s60d

Consequently the ion-dipole interaction also contributes to
the stress and elasticity tensors. These additional terms are
given by

si j
B = −

1

V
o
a=1

N−1

o
b=a+1

N

hB1sqbZij
a − qaZij

bd + fqasmm
b rmd

− qbsmn
arndgB2r ir jj −

1

V
o
kÞ0

kmax

AskdfsS*S+ S*SdQi j

− S*Ci j − SCi j
* g s61d

and

Cijkl
B =

1

VKo
a=1

N−1

o
b=a+1

N

hB1sqaYijkl
b − qbYijkl

a d − B2sqaZij
b

− qbZij
adrkr l − B2r ir jsqaZkl

b − qbZkl
a d + B3sqamm

b rm

− qbmn
arndr ir jrkr ljL +

1

VKo
kÞ0

kmax

AskdfS*Fi jkl + SFi jkl
*

+ sS*S+ S*SdVi jkl − Qi jsSFkl
* + S*Fkld

− sSFi j
* + S*Fi jdQklgL . s62d

Therefore the full stress tensor is given by Eq.s13d where
si j

B is given by the sum of Eqs.s27d, s44d, ands61d. The full
elasticity tensor is given by Eq.s16d whereCijkl

B is given by
the sum of Eqs.s31d, s55d, and s62d. Note that the expres-
sions derived here are valid when no other internal or exter-
nal constraints exist.

IV. CONCLUSION

Many synthetic and biological materials are composed of
ionic and dipolar particles. A computational understanding of
the elastic properties of these materials requires a sound the-
oretical description of the stress and elasticity tensors for
ionic and dipolar systems. Previous theoretical descriptions
of these tensors in ionic and dipolar systems assumed that
the orientation of the dipoles are independent of the strain
tensor, thereby neglecting contributions to the stress and
elasticity tensors that could be important. Our new expres-
sions for the elasticity and stress tensors of ionic and dipolar
systems should provide a sound foundation for computa-
tional studies aimed at understanding the elastic properties of
biological structures where the constituent elements exhibit
very large monopole and/or dipole moments that may domi-
nate their mechanical properties.
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